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ABSTRACT

The effect of the lower boundary conditions in modifying 
the boundary layer structure of an axi-symmetric, quasisteady 
maintained vortex is studied by extending the earlier investi
gation of Kuo (1971). Nonzero vertical velocities at the top 
of the sublayer representing the lower extremity of a vortex 
are prescribed. Positive values of vertical velocity signi
fied pumping; negative, sucking. The two second order ordinary 
differential equations governing the tangential and radial 
velocities of the vortex are solved by employing a Newton's 
iterative method (Keller, 1968).

The result, namely that pumping elevates the boundary 
layer and destabilizes the motion and suction depresses the 
boundary layer and produces stability, confirmed the earlier finding of certain fluid dynamicists. Modifications of the 
boundary layer structure produced by spatially varying the 
angular momentum distribution of a vortex are analogous to 
those caused by the imposition of the Taylor boundary con
dition at the lower extremity of the vortex. They are also 
similar to those rendered by varying pumping or suction. The 
latter result is believed to be new while the former simply 
confirms an earlier theoretical deduction.



1. INTRODUCTION
The atmospheric vortices in general belong to various space 

and time scales. Those classified under the mesoscale category 
are being increasingly studied recently. A cause for this 
accelerated activity lies in the current demand for knowledge 
of the severe local storms and tornadoes which appear to de
velop intense vortical circulations and strong horizontal and 
vertical velocities. Since direct measurement of the motion 
field associated with these storms is very dangerous, reliance 
is placed on remote sensing. For a documentation of the vor
tical structure employing dual doppler radar see Ray (1976) and 
Brandes (1977). It is generally believed that these vortices 
are maintained through thermal convection. The means of main
tenance is not of interest in this study. The velocity field 
above the boundary layer is characterized in general by the 
tangential field and a quasi-cvclostrophic balance appears to 
exist in the near steady state. Within the boundary layer the 
velocity distribution is different because of friction. Signifi
cant radial velocities and pronounced convergence fields are 
developed in the boundary layer. Because of lack of adequate 
velocity measurements in this layer the amount of convergence 
and its spatial distribution are not properly known. Recent 
radar observations, however, reveal that convergence attains 
its maximum values in the lowest few hundred meters (Ray, 1976). 
In addition to this 'normal' convergence mesovortices appear 
to develop sudden increases in the convergence field. This



abnormal convergence be it due to an explosive growth of con
vection pertaining to the mesovortex (Fujita and Caracena,
•

1977) or due to scales of motion larger than the mesovortex 
itself culminates in the production of large vertical veloci
ties at lower elevations. In a laboratory such a process can 
easily be simulated by injecting mass through the bottom 
boundary— this process being termed blowing (e.g., Sparrow 
and Gregg, 1960) or pumping. The principal purpose of this 
article is to allow pumping* or suction to take place at the 
lower extremity of an idealized atmospheric vortex (radius 
about 5 km) and to examine the modified boundary layer structure. 
Pumping is included by prescribing positive values of vertical 
velocity and sucking by negative ones at the top of the surface 
layer.

Several earlier scientists had experimented with various 
types of lower boundary conditions, e.g., Eliassen (1971),
Kuo (1971) and Bode, Leslie and Smith (1975) discussed the 
difference between the boundary layer structures with the 
slip and no-slip boundary conditions; Stuart (1954), Rogers 
and Lance (1960), Sparrow and Gregg (1960), Evans (1969), and 
Nguyen et al. , (1975) found out that suction stabilizes the 
momentum field while Sparrow and Gregg (1960), Watson (1966), 
Kuiken (1971), Debnath and Mukherjee (1973) and Nguyen et 
al. , (1975) observed that pumping causes a deepening of the 
boundary layer and hastens the transition from laminar flow

*The term 'blowing' was used instead of 'pumping' by certain 
scientists, e.g., Sparrow and Gregg (1960).
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to turbulent thus contributing to an evantual destabilizing 
of the fluid flow.

The boundary layer of a local atmospheric vortex is un
doubtedly very complex and its study through theoretical means 
is possible only after making several simplifying assumptions. 
Results based on such idealizations are still considered to 
be worthy if they provide valuable insights into the basic 
dynamics of the vortex.
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2. THEORY 
a. General Remarks

Several theoretical studies of the boundary layer of a 
vortex appeared in the literature. For a discussion and review 
of these see Schlichting (1968) and Davies-Jones and Vickers 
(1971). Modeling was done of a vortex in rigid rotation, e.g., 
Boedewadt (1940), or of a potential vortex, e.g., Burggraf 
et al., (1971), and Serrin (1972). Others have studied flows 
which vary from solid rotation near the inner core to potential 
far away from the center; e.g., Mack (1962), and King and 
Lewellen (1964) assumed the external tangential velocity to 
vary as V rn where n varied from -1 to 1. A single value of 

cannot describe the velocity distribution within the vortex. 
Chi (1974) considered a combined Rankine vortex and numerically 
integrated the governing equations for various Reynolds numbers.

In the following the structure of the boundary layer of 
a vortex subjected to both laminar and turbulent conditions, 
and in a quasisteady state having both solid and nonsolid 
rotation will be investigated. The vortex is assumed to have 
an inner core with rigid rotation. Studies by Rogers and 
Lance (1964), Rott and Lewellen (1964), and Chi (1974) tend 
to confirm this assumption. Following Kuo (1971) non-rigid 
rotation is modeled away from this inner core by a power law 
representation of the momentum distribution. It is well known 
that such an idealized structure will not yield solutions that 
represent either potential or near potential flow, e.g., see 
Kuo (1971), King and Lewellen (1964), or Burggraf et al.,



-5-

(1971). Nevertheless the assumption of a power law variation 
of momentum is sufficient for our purposes because the vari
ations between laminar and turbulent flows are most pronounced 
within the interior of a concentrated vortex (see also Bode 
et al., 1975). 
b. Relevant Equations

In this investigation Kuo’s (1971) study of the boundary 
layer of an axisymmetric vortex is followed and the governing 
Navier-Stokes equations are formulated by assuming that vari
ations along the boundary are much smaller than variations normal 
to the boundary. Representing dimensional variables with a 
bar and denoting nondimensional variables by ordinary letters 
we set

V„V ■ 1 j wr = W V„ SR .
} = ^ f j j ^ ”2-

i> - 7) ^ Sp /L^‘

where V^, r^ and <& R are the maximum tangential velocity, a 
horizontal scale length and a reference boundary layer thick
ness, respectively. Some typical mesometeorological magnitudes

Vm» rm» etc., are given in Appendix B. The governing non- 
dimensional equations are:

(A- 4- \*t3U - YL - ^
'&/L ^ YK ~Y

(2.1)
yy ;

a ^ vr Trir 4. ^ ^ (2.2)
'b'v /t 7)^ '

- o. (2.3)
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The above are simplified by making use of the following 
similarity transformations (Kuo, 1971):

5 tn-i _ . 2.n-iq.v\- 
~k. ~ ov); - h. ^ * <Xy)

~ */a_ •n jjn+l) Hh)+- O'*) £ — >) /tIsT

These transformations can be related to the angular momentum
m through v = m/r = m G/r and u=- m F/r, where m = r^n. Theo o o
boundary layer structure of different parts of the same vortex 
can be studied by letting n take several values in the range 1 
to 0 thereby representing the flow from rigid rotation (n = 1) 
near the axis to the well known ’potential' vortex relationship 
outside the region of maximum winds (n = 0). However, as 
pointed out before, e.g., by Kuo (1971), mathematically speaking 
solutions for laminar flow do not exist for n much less than
0.5.

Utilizing the above similarity transformations Eqs. 2.1, 
2.2 and 2.3 respectively become

,‘K-lA I" - (n -hJ I4 4f -v 1 (2.4)tVv'j J

iC (X (r\ -v I) H cMj — 2. ^ F Cr (2.5)
i\^ tV-v)

F - (2.6)•A'Yj

c. Boundary Conditions
F, G and H can be obtained by solving the above system 

under proper boundary conditions. At a point Slocated 
much higher than the customary top of the boundary layer the
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Radial motion vanishes and cyclostrophic balance prevails, 
i. e. , at

r'/ } F =0 <w G - i (2.7)
At the lower extremitv, ^ - 0, imposition of the no

slip boundary condition for laminar flow yields
f - G - H - O. (2.8)
For turbulent flow regimes a sublayer develops close to 

the surface within which velocity components decrease to zero. 
At the top of the sublayer, > velocity components are non
zero and are given by

V - K d \\G'^JJ (2.9)
a relationship originally proposed by Taylor (1915) which is
called the slip boundary condition or the geophysical boundary
condition. Kuo (1971) regards K as a measure of the effective 
thickness of the sublayer <5^* One can move the lower ex
tremity from the surface to <^b and propose the following 
conditions* there:

\ '
at 1 ~ S. > F - K GF and H —^ (3.0)

ciy

* Alternatively, new variables 
w = h w, and
S’ = ->//h0> ho > 0 are defined, following Kuiken (1971), 

and Fqs. 2.4 through 2.6 are transformed correspondingly.
The second order terms d2T/d°J2 and d2G/d'>/2 become re
spectively hQ d F/dJ and h^ 2d2G/d5^ thus pointing out the 
fact that the fluid behaves as though it is inviscid for 
large h^’s.
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where hQ is a measure of the vertical velocity induced by

the external divergence or convergence field. Positive values 

of hQ signify pumping and negative sucking. In the following 

since no detailed calculation of the velocity field is made

in the sublayer the point iiss  ttaakkeenn  aass  nornj  ==  00  aanndd the

computations are performed in the interval fj = 0 to

Before the numerical solution of Eqs. 2.4, 2.5 and 2.6 

is discussed, an analytical treatment, parallelling Kuo’s 

development, is given so as to provide an insight into the 

role of pumping in altering the boundary layer structure of 

a vortex.

d. Analytical Solutions for Arbitrary Exponents, n’s

Following Kuo (1971) let the Eqs. 2.4, 2.5 and 2.6 be 

expressed in terms of the new variables y, f and h through the 

relationships

—-I/*.
TJ - oo j\ - oa ^ and r = n so that

(3.1)

££ (3.2)
Juu* 

-

J

(3.3

where

<k
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Further simplifications are made by expanding the flow vari

ables in terms of small number £ :

o’ 3 Do J
Gr - I + 2- 6 ft ; V - *£ e hj=' 0" 1 0

and

„ 3^ - r'o ~t ZT £ A (3.4)
5-1

where

^1=

The appropriate boundary conditions are: 

at y = 0

V K > d>/ I,

3 :-f l r K ^J)j j - | (3.5)

.
3 j - K ) d >/

as y —^ o®

ij " 0 ; j ^ I ; (3.6)

9 j - o 5 >/ i •

Here K is a small constant determined from (2.9) and the 

relationships governing °7, y, H, h, F and f.
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Substituting Eq. 3.4 into Eqs.. 3,. 1 and 3.2 yields

'V i-l
^ ^0 — C ih _2-9i •= 21 (a, V'L•  ^C ~r  

-1
^ +3.

*v3j d-i
c ^ H ■ (a/ Vrrv ■- z

L--I
i^c

where c = a,h .1 o
Utilizing standard methods (Wylie, 1966) the solution 

of the homogeneous system associated with = 1 is found to 
be

Qjy b <**> t j°a 

^ Co'° V<) + «^)»

^ ^ + ( ^‘p -v bp*) J _}**+> l“i

(3.9)

where p and q are the real and imaginary parts, respectively 
of the complex roots = p + iq of the 4th degree character
istic equation

icp 4- C .4 ± Ij- — 0 (4.0) 

which leads to the identities

Ipv- f-c\> - o |j-(=V- t^|- 2-'
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Because our solutions are bounded as y—^ oo we can only accept 
roots for which p ^ 0. The values for a and b are determined 
for

<?= -(I ~ Pj<*) + (i-FK*)X)~'

and
k - + (t-rwV1-

In Table 1 both the real (p) and the imagarv term (q)
of the roots of the characteristic equation are shown for
various values of n and h . For the same n increased valueso
of hQ cause reduction in the magnitude of p. An examination 
of the solutions (3.7, 3.8 and 3.9) then implies that the 
depth of the boundary layer is increased by pumping. Another 
important finding is that increasing ho or decreasing n pro
duces similar solutions. Thus pumping has the same effect on 
the results as decreasing n. For suction (results not pre
sented) the magnitudes for p are larger than one and conse
quently this increased damping causes a reduction in the boundary 
layer thickness. These conclusions, valid for the first term 
of the analytical solution, can now be compared against the 
numerical answers of the nonlinear equations.
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3. RESULTS

The fields of F, G and H from the numerical solutions of 
Eqs. 2.4, 2.5 and 2.6 are presented in Figs. 1-8 for various 
combinations of n, K, pumping and suction. Details of the 
numerical procedures are described in Appendix A. To limit 
the number of figures profiles of F which illustrate the 
boundary layer structure vividly are shown more than either G 
or H profiles. Corresponding dimensional quantities are obtained 
by referring to Table 2 in Appendix B.

Solutions with pumping (h = .2) and suction h = -.2) areo o
contrasted against neutral (hQ=0) conditions in Fig. 1, which 
show the vertical profile of the radial component for laminar 
flow (K=0) in solid rotation (n=l). Pumping enhances the flow 
and increases the boundary layer thickness where as suction sub
dues the motion and decreases the boundary layer depth. These 
conclusions remain valid even when Taylor lower boundary con
ditions are used. For example, Fig. 2 shows similar findings 
when K=1.0. The ordinate of Figs. 2 through 7 is plotted only 
up to 10 although the computation was done through 20. From 
Figs. 3, 4 and 5 we see that by varying selected values of K, 
n and hQ, respectively, profiles that resemble each other re
sult. In Fig. 3, n is fixed at 0.5 (nonsolid rotation) and K 
varied between 1.0 and 3.0, (The value K=l.7838109 was 
selected for comparison purposes because it is equivalent to 
the value of K =1.5 when n=.5 in Kuo’s study and in our analytical 
solution presented in Eqs. 3.7, 3.8 and 3.9.) These profiles
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are very similar to those shown in Fig. 4 when K was held 
fixed and n varied between 0.35 and 0.75. Varying the lower 
boundary condition for H produces a similar effect on the 
F-field as is evident from Fig. 5. Thus, the previous con
clusion (Section 2d), namely, enhanced pumping is equivalent 
to reducing n or decreasing K,also holds good on the basis 
of nonlinear solutions. In other words the externally in
duced vertical motions at the lower extremity tend to make a 
rigidly rotating vortex into a nonrigidly rotating one.

Figures 5, 6 and 7 show the typical effect of pumping 
and suction upon the dimensionless measures of radial, tan
gential and vertical velocities respectively. The F and H 
fields experience the most changes because of pumping or 
suction. Their respective maximum values in the low levels 
increased by as much as 25% and 60% over their neutral counter
parts. The tangential velocity component G tends to be less 
effected.

Figure 8 shows that pumping has a substantial impact 
for the case n = 0.25 and K = 2. Burggraf and Stewartson 
(1975) have shown that as n is decreased the similarity solu
tions (F) approach a form reminiscent of a ladder and con
sequently do not want to satisfy the upper boundary conditions. 
Pumping, as pointed out before, is equivalent to reducing K 
or decreasing n. Thus, the situation described by Burggraf 
and Stewartson can occur in the presence of pumping for much 
larger values of n and/or K than previously suspected.
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In Table 2 given in Appendix B, a set of dimensional vari
ables and the nondimensional quantities are given for some 
typical mesometeorological vortices. For convenience only the 
quantities associated with the simple cases of angular momentum 
with n = 1.0 and n = 0.5 are shown. This table shows that
vertical velocitv at the top of the surface layer, w , corres-s
ponding to a value of nunnin? of h =0.2 mav range from 0.6o
cm s to 12.6 cm s for commonlv occurring meso vortices, 
which is ouite reasonable.

As more and more data on meso vortices become available 
through double doppler radar,or other means optimism exists 
for the development of more sophisticated theoretical models 
of these vortices in the near future.
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APPENDIX A

DETAILS OF THE NUMERICAL METHODS

An effective numerical method for solving nonlinear 
boundary value problems of the type Eqs. 2.4 and 2.5 is the 
Newton's iterative method (Keller, 1968 and Collatz, 1968). 
This technique along with the Gaussian integration to solve 
Eq. 2.6 is described in the following.

Subdivide the interval (0, c^into units of constant 
length h= T).^( — by the partition

<1N1 - i-v,0 - • ' ' '  A -ri
Now discretize Eqs. 2.4 and 2.5 using centered differences. 
We denote the resulting nonlinear difference equivalent
vectorially by

Cp — O (Al)
. thwhere the ir component is 4>C - ((-/,•»*■■ ty)

and
= wd ft* - i> + 0'Ln)*F41

 thv

+ H%
- kv<*'? ^

L
 

l
o

 

The superscript T denotes the transpose, h the step size and
F. = F (4.), G. = G( 4 .) and H. = H( 4 .). For any initial1 <11 1 x 1Testimate of s. = (F.,G.) , (i = l....,M), define an iterative
process

—<» (1) ^tk) ^ (k)S “ S - A.s Iss, - 0,1 •
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y—(k)where as is the correction applied to the most recent, 
kth, iterative estimate. A.s^k^ is the solution of

UO_= 4 k -ot I,”* • . ( A2)

D is a block tridiagonal matrix representing the Jacobian of 

4' evaluated ising the k iterative estimates and has the form,

where in general

^^L-l

Ai

? UC-|

\
Bi

&6rc '

<Xv\{L

t'CTt^ I
s is found by using (block tridiagonal) Gaussian elimination

(Varga, 1962).
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With each iteration improved estimates for and G^, 
(i=i,...,M), are obtained. Using a Gaussian-type integration, 
(see Conte and deBoor, 1972) Eq. 2.6 is solved for H^, (i=i,... 
H+l), using the latest estimates of the F^’s. This cycle is 
then repeated till a desired accuracy is achieved.

One interesting point in this process is the way in which 
the upper boundary conditions, i.e., at , are handled.
Since the position of is not really known an educated guess
must be made. If the residual, i.e., a numerical approximation 
to equation (Al) is small on the estimated interval (0, (5^) 
and the boundary conditions are also satisfied then is
accepted as the top of the boundary layer. Otherwise cVyj is 
increased thus changing the order of matrix D. If in the ad
justment process the desired programming limitations are 
exceeded as based on step size, storage or computing time then 
the upper boundary conditions must be reformulated. In the 
latter case we obtain the solutions over a desired range by 
using the approach suggested by Froese (1962). This method 
replaces the boundary conditions in question with F^+1 = c^^ 
and G.#J, = c0 G.., where the constants c, and c0 are determined 
from asymptotic expansions or from physical insight. In our 
case we choose ci = c2 = All interpolations performed in
the integration process are made using a cardinal cubic spline 
(Nilson, 1970). The numerical procedure for handling the lower 
boundarv conditions are the same used by Kuo (1971).
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In most of the experiments the interval ^0, was

divided into 200 equal parts with h = 0.1*while in some into 
450 with the same h. Convergence was attained when the largest 
absolute difference between two successive iterated dimension
less motion field components, e.g.,V is less than 10“5 in 
the entire domain.

* Tests of various step sizes show that h = 0.1 give4satis- 
factorv accuracv.
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List of Figures

Fig. 1 . Illustrating a nondimensional measure of the radial 
component (F). Conversion to the dimensional form 
deoends on the assumed vortex characteristics and 
may be made by referring to Apnendix B. Note  the in
fluence of pumping  on development of the F field.

F iF g .  2 . Same as F i g . 1 except the Taylor b o u n d a r y condition 
is used.

Fig. 3 . Nondimensional radial components (F) as functions
of the Taylor coefficient ( K ) . Notice how the increases
in K depress the b o u n d a r y layer. The value K =
1.7838109 was chosen to correspond with Kuo ' s (1971)
K = 1.5 for n = 0.5. (Note KKuo = Kours n 1/4 becauseKuo ours
of his choice of y as the ordinate and ours of η )

Fig. 4 . Nondimensional radial components (F) as functions of
n.

Fig. 5 . Same as Fig. 4 except non-rigid rotation (n=0.5),pumping, 
suction and neutral states are considered.

Fig. 6 . Illustrating a nondimensional measure of the tangential 
component ( G ) . Notice that pumping or suction are 
producing relatively subdued effects on the G-field 
compared to those on the F or H-fields.

Fig. 7 . Illustrating a nondimensional measure of the vertical 
component (H).

Fig. 8 . Same as Fig. 5 excepting n and K are changed. Notice 
the pronounced change with pumping.
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ABSTRACT

The rapid transient motions within a decaying axisvmmetric 
vortex boundary layer are analyzed for various 'local' Rossby 
and Reynolds numbers. Both laminar (no-slip) and turbulent 
(slip) boundary conditions are considered for flows over ro
tating and stationary surfaces. Similarity transformations 
are performed by expanding the velocity components in powers of a ratio of dimensionless radius to time. The zeroth-order 
system described by two nonlinear second order ordinary dif
ferential equations is solved by Newton’s iterative method. 
Comparisons are made with Hatton (1975) for the special case of 
laminar flow over a stationary surface. For the first-order 
system, asymptotic solutions representing the flow far above the lower surface are obtained.

For laminar flow our results indicate that the vertical 
velocity is either only downward, both upward and downward 
(thus an axial stagnation point exists) or only upward motion 
depending on the value of the Rossby (Reynolds) number. 
Turbulent conditions are shown to produce onlv negative (downward) vertical velocities. The presence of an axial stagnation 
point and the value of the Reynolds number for which the 
axial motion (laminar, zeroth-order) becomes completely down
ward corresponds with the findings of Hatton (1975). The 
addition of mass as simulated by blowing is shown to effectively delay the decay process.



1. Introduction
The boundary layers of concentrated vortices in the 

atmosphere, e.g., a tornado, have been simulated by many 
laboratory and theoretical investigations (for a compre
hensive review see Davies-Jones and Kessler, 1974). Even 
studies of the steady-state problem have encountered 
difficulties. They are primarily due to the fact that the 
tangential velocity profile near the top of the boundary 
layer changes radically with the radial distance, the govern
ing partial differential eouations are nonlinear, and the 
lower boundary conditions are hard to satisfy. Additional 
problems confronted the theoretical study of decaying vor
tices (Oseen, 1911; Pott, 1958, 1959; Bellamy-Knights, 1970, 
1971, 1974; Hatton, 1975). For example, a knowledge of the 
initial velocity profiles is demanded. These are poorly 
known at present. Also the relationship at the top of the 
boundary layer between the tangential velocity component and 
the radial pressure gradient and the nature of their time 
dependence have not been clearly documented.

The boundary layer dynamics within the inner portion of 
a rapidly decaying vortex is of interest in this study. The 
decay is characterized bv the core expanding outward and the 
radial inflow becoming weakened. The outward expansion 
itself appears to be more a result of the internal flow dy

namics than of diffusion. The rapidity of decay makes ob
servation difficult.
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Recent studies by Hatton (1975) of the boundary layer 

of a decaying vortex inner core showed that for laminar flow 

and solid rotation the axial motion can be up or down de

pending upon the value of a parameter proportional to the 

external angular velocity. Besides, an axial stagnation 

point was found provided there was radial inflow. The 

theoretical results were justified by appealing to the obser

vational and laboratory findings (e.g., Rossmann, 1960; 

Hoecker, 1960; Ward, 1972; Jischke and Parang, 1974; and 

see also Hsu and Fattahi, 1976).

In the following the governing Navier-Etokes equations 

are written in dimensionless form and the flow variables 

are expressed in terms of a oower series in r/t, an approach 

analogous to that suggested by Eliassen (1971). Here r and 

t are the dimensionless radial and time coordinates. A 

sufficient condition (not necessary) guaranteeing the 

validity of this approach is that the ratio r/t is smaller 

than 1. This places a major restriction on the region of the 

vortex investigated and the progression of time since the 

decay process began. This restriction will be clarified 

later.

The non-dimensionalization process introduces either the 

'local1 Rossby number Ro or the Reynolds number Rg depending 

on whether we examine flow over a rotating or rigid surface, 

respectively. These numbers are defined as
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Re = V£/r , (la)

and Rq = \//S> (lb)

where V is the idealized tangential velocity observed at the 
top of the boundary layer, £ represents a characteristic 
depth, y is the kinematic viscosity, and is the angular 
velocity of the rotating solid lower boundary.

In this study the boundary layer dynamics are examined 
over a wide range of Rq or Re numbers. Both laminar (no-slin) 
and turbulent (slip) boundary conditions are considered. For 
the case of laminar flow the first term approximation predicts 
an upward vertical motion and an axial stagnation ooint for a 
certain range of Rq (Re). The same aDproximation for turbulent 
flow indicates the vertical flow to be downward. However, 
in both cases it was found that the fluid flow in the boundary 
layer and in the viscous vortex core far above the boundary 
are dependent upon the Rossby (Reynolds) number. The nature 
of these latter motions is predicted from the asymptotic 
solutions of the similarity equations. These asymptotes 
indicate that cyclostrophic balance (centrifugal force balancing 
the horizontal pressure gradient) is quickly attained for 
Rossby (Reynolds) numbers increasingly larger than one.
Suitable similarity transformations are now nresented.

2. The mathematical development
Consider an axisymmetric vortex of homogeneous 

and incompressible fluid with a fixed kinematic viscositv Y •
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Let this vortex be in contact with a plane boundary perpen

dicular to the axis of symmetry. Following a procedure 

similar to that used by Eliassen (1971) we express dimen

sional variables, denoted by a bar, in terms of V, A, 

and and introduce the dimensionless variables r, z, t,I
m, u, w and the transformations

t= /ij t or t = cfA'V-'1 (2a)

depending on whether the flow is over a rotating or fixed 

lower surface, respectively and
TzS r , I -<fz , 7n = VmS'\ ~u = 1/4 , ~w = W. (2b) 

Here z denotes the vertical coordinate, r the radial distance 

from the vortex axis (a quantity that can greatly exceed one) 

and t the time while m(r,z,t), u(r,z,t) and w(r,z,t) repre

sent the angular, radial and vertical velocity components re

spectively. In addition, 6 on a rotating surface is given by
A

In terms of the dimensionless variables the governing

Navier-Stokes equations representing flow over a rotating

surface (for flow over a stationary surface replace Ro with

R ) are e
jUru) + rTT - ° > C3a)

cWJ «3/nr* - .An rx , * jjnL + ( 3b)
<)tr at az az* at" ar

-V1- d w 4- a u *Jaw m) ( 3c)az-at drx ar (t/1
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for all r, z and t > 0. The first is the continuity equation, 

the second is the equation of motion for the tangential vel

ocity component (v = mr) whereas the third relates to the radial 

component. The nondimensional radial pressure gradient is ex- 

pressed as - J~L r in the last equation. As pointed out by 

Greenspan (1968) and Barrett (1975) the importance of the non

linear terms is determined by the R or R numbers. In theo e
early stages of decay these numbers are fairly large. Alter

nately, one mav define u = uP , w = wR , m = mR and /\-J\Ro o’ o o
and rewrite equations (3a, b, c). For example the term

- m )r becomes (/ift - /m^)r, and the equations do not 

show the explicit dependence on R . But the dependence re- 

mains implied through the parameter SL, used in describing 
the radial pressure gradient term.

The lower boundary conditions at z = 0 will depend upon 

whether the flow is laminar or turbulent. With the lower sur

face in solid rotation (m = ) "the laminar case requires that

m - I//?„ j ^ - w r 0 j (4)

at z = 0 for all t>0. For the stationary case no-slip boundary 

conditions require that m is also zero. For the turbulent case 

the boundary conditions (Taylor, 1916), in dimensionless no
tation, are:

(on a rotating surface)

c)/n
- £ ft> (rn ~ /Ko) (rn - (/ft) ^ +

cj M 
<3 z (5a)
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(over a stationary surface)

m mJ 1 ■f

dz
 t

C Rt 4
/77iri t

(5b)

and w = 0. Here C is the dimensionless drag coefficient.
The exact expressions for the upper boundary conditions 

are to be determined from asvmptotic solutions which are 
derived from, and are compatible with, the similarity equa
tions. These asymptotes are derived by assuming that for 
all time t>0 both of the horizontal similarity flow vari
ables become constant sufficiently far above the lower boundary 
(z>> 0). To be physically realistic, above the boundary layer 
the flow must attain cyclostrophic balance for large Rossby 
or Reynolds numbers. This may be expressed as

m—> SL and u---> 0

as Rq (Fe) becomes large. If the study of a decay of a 
vortex is contemplated when the initial state is represented 
by the steady-state the above conditions are also desirable 
initial conditions at the beginning of the decav process.
For Rossbv (Reynolds) numbers of order one, transient terms 
in the equations assume importance so that deviation from 
the cyclostrophic balance exists.

The z coordinate is now replaced by the similarity
/ J/-2-variable J where ^ . In addition, the following

expansions, in terms of a power series in r/t, are utilized:
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t«o(7) + -jr ■

<i-, 7 ai/3>
, V«(7J  t; + ±-Utf) +

■fc

Wf, 7r t) jA— ,2 ^o(?) -j- -L w,^; -]-■•' (6)

_LA(r,t) ~ yi

The initial boundary value problem defined earlier after in
serting (6) in equations (3) can now be described by a series 
of equations in various powers of r/t. This procedure facili
tates obtaining mathematical solutions relative easily but 
their physical interpretation is somewhat complicated.

3. The laminar boundary layer
A. The equations - the zero-order system

Substituting the above expressions into equations (3a, b, c) 
and collecting terms of the lowest power of r/t gives the zero- 
order system:

yu0 + v< ' O ,
- f<A0 - -f- X(z/fc(jm,2+2.*o«o'+Sll -&*)= Ka" 9 (7)

-V-Mo - +- (xujn0 -f- - \v£ .

The prime denotes differentiation with respect to y ,

B. The upper boundary conditions
Upper boundary conditions are determined by assuming that 

mo uq asymptotically approach constant respective values
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for y sufficiently large, i.e., z large or t very small. 

The asymptotes, as determined from the equations, are

= (A‘ ' v'g) 8jn «f we ' ( )

We assume that in the limiting process v approaches V. This 

is equivalent to, via (2) and (6), requiring that mQ approach 

_f\Q> In terms of the original variables the above expressions 

reduce to upper boundary conditions similar to those used by 

Hatton (1975). A comparison between Hatton’s development of 

the decav problem and ours is given in Appendix A.

C. The lower boundary conditions

In the case of laminar flow the coupled ordinary differ

ential equations (7) are complemented by lower boundary con

ditions derived from (4). The zero-order conditions are:

(on a rotating surface)

ln0 = \/R0 , %= = O vt ? = o 3

(on a stationary surface)

m0= u0 - - o d* ^7-0.
4. Turbulent flow

The zero-order boundary conditions obtained ^rom (5a, b) 

for the turbulent flow are:

(9)IT)/ =0 , Uo - 0 dnd Wo = 0 \^hen y=0.

The nonlinea
,
r
 
 system (7 - 9) has the 

*
f
 
ollowin

, 
g s

JA
olution (which

may or may not be unique) : jnD - ( A-0 - —J J ~
° 'jur/s,

d — — 7an  

wvX
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These expressions are valid provided m is well behaved, i.e.,

iA > O.
V 'o * S_lNote that a degenerate case occurs when R^ = i.e.

m = 0 but u and w z£ 0. The general solution represents a o o o/ &
vortex in solid rotation with outward radial and downward ver
tical motions. The total contribution made by these terms to 
the boundary laver and viscous vortex depends upon the parameters
/\ and R . It should be noted that the horizontal velocitv o o
components near the top of the boundary layer for turbulent 
flow (zero-order solutions) are identical with the asymptotic 
zero-order solutions obtained under laminar conditions.

5. Flow near the top of the boundary layer
The asymptotic solutions of the first-order system will 

be determined for large ^. Such solutions will be particularly 
interesting since they relate to non-solid rotation in the 
viscous vortex core. Their overall contribution is neverthe
less small provided rt’^yT^'^yX^. For large Rq , the re
striction on rt-1 (given etc) is established by the

expression

i-A, <■■■•) = i
because we require that in the limiting process v approaches
V.
A. The first-order system

Proceeding to the first-order system, obtained by sub
stituting the series (6) into the equations (3a, b, c)
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and collecting terms in the next lowest powers of r/t, we 
obtain

(10)

There is no contribution made by the radial diffusion terms 
(i.e., radial terms on the right-hand side of equations 3b, c) 
in the above svstem since they yield expressions of a different 
magnitude with resnect to r/t.
B. The asymptotic solutions

Assuming that m^ and u^ approach constants provided is 
sufficiently large, we can compute the asymptotes. They are

(11)
and

-Ao SI,

where k= i +

For F. largeo

and
hi, Z A, 
u, Z O.
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C. Zero and first-order solutions combined

Utilizing (11, 8, 6), we find that at the top of the 
boundary layer the motion is described by

X
■fc

mo JL -A A
t too fa

(12)
-f- X A _j_ X ^ I Mr t IVfo

and within this region the vertical velocity behaves as

A -h -Xt: +
Of course the actual or observed vertical velocity at the top 
of the boundary layer must also include the accumulated effect 
from the boundary layer. If the above expressions are related 
back to dimensional variables then we have (for flow over a 
rotating surface)

A <

V'Xf 0

i +VF /r,° K

5= -4■ + R,T -A A, +it Vt
(13)

/?0 rw= --X + A/l, +Vt /(

where is defined in (8). However, there is a restriction on 
the ratio r/t. It must satisfy

jr W or W
t
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depending on which lower boundary conditions are used. The 
restriction on r/t (Section 5) guarantees that v approaches 
V for (R ) increasingly large. Similar expressions also 
describe z/t. Clearly the magnitude of the ratio of V over 
Rq or V over is established (initially) once , $ and 
dr are assigned values. Note the identities

V7/?, - C'rSlsf* - 'T/t ■
We can now compare equation (13), the solutions at the 

top of the boundary layer, with the corresponding flow vari
ables used by Hatton (1975): They are

kc v r (14)Y'V-fc
and

-c

where 2TsfK denotes the circulation. No restrictions were 
placed on r/t or z/t, (other comparisons given in Appendix A). 
6. A Numerical Method

An effective numerical method for solving the boundary 
value problem described by equation (7) and the boundary con
ditions enumerated above is Newton's method (Keller, 1968). 
This iterative technique permits a very efficient application 
of the Gaussian elimination procedure. All solutions for the 
finite difference equivalent of (7) are obtained using a con
stant step size of .01. Other details of the computa
tions included the fact that wq was recalculated during each 
iteration using a Gaussian integration procedure. The con
vergence criteria required that the new calculations of u
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and m change by less that 10-4. There was no difficulty in 

o
obtaining convergence for all cases tested. The initial 
guess first used was the steady-state solution due to 
Boedewadt (1940). The value chosen for J^~Q was one* Inter
polation for other values of is easily accomplished by 
using the relationships described in Section 2, i.e., for a 
specified A (A = R ZV), various combinations of RQ and J\ are 

possible.
The upper boundary conditions are reformulated using an 

approach suggested by Froese (1962). That is, the boundary 
conditions are replaced by the expressions

N + l (V andU0 moN -hi n
 —

implying that between discrete points and y ^J+1 the
values of u and m change by fixed amounts, c., and C2, 
respectively. The values of c1 and c? can be obtained from 
the asymptotic solutions. We choose c^ = c2 = 1 since it is 
known that for sufficiently large values of y , the independent 
variable, both mQ and uq approach a constant.
7. Discussion of laminar results

Figs. 1, 2 and 3, respectively show the numerical solu
tions for the dimensionless vertical, radial and angular 
velocity fields (zero-order) for selected Rossby numbers
R = 1.6, 5.0 and 500. The variation of vertical velocity 
* o

as a function of RQ is apparent in Fig. 1. For example, the
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direction of the axial flow is entirely upward for large 
R ' s, like 500, and completely downward when Rq is less than 
or equal to 1.6. When Rq is greater than 1.6 but less than 
some value, say 10, an axial stagnation noint is observed.

Because the variation of R influences the solutiono
greatly, we conjecture that no similarity solution of an
unsteady vortex for a constant Rq is valid over a broad time
period. Even though the entire decay of the vortex core
cannot be simulated using a single R , several distinct R 'so o
correspo

y
nding to discrete time periods may be employed.

Hence  may be thought of as a vertical coordinate since we 
limit the range or value of t (remembering the restriction 
on r/t in Section 5). Alternately, z can be held fixed, and 
variations in ^ can be interpreted to have been caused by 
the changes in time. Thus, as Hatton (1975) has indicated, 
the precise significance of and how the choices of z,
t and r/t should be related to the physical situation is 
somewhat unclear. A greater observational knowledge of the 
meteorological vortex should pave the way for an exact choice.

The depth of the boundary layer, the region below that 
^ (interpreting as a vertical coordinate) where uQ and mQ, 
respectively, reach their asymptotic values given by equation 
(8), can be easily identified in Figs. 2 and 3. Clearly the 
boundary layer is depressed when R^ = 500. At this Rossby 
number a large inflow region exists just above the lower 
boundary but the dimensionless radial velocity component very
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_ 3quickly approaches .707 x 10 (the asymptotic value) for 

y/ larger than .2. VJhen Rq is decreased sufficiently 
(R <1.6) the entire boundary layer is composed of an out
ward directed radial velocity. Such an outflow is probably 
responsible for the rapid deterioration in the final or 
decaying stage of a vortex.

In Fig. 3 we see that the angular velocities' devi
ation from the cyclostrophic condition that m - with 

= 1 at the top of the boundary layer, is small even for 
F-o = 1.6. Significant overshooting of the angular velocity 
occurs for large Rossbv numbers, when the solutions contain 
oscillations resembling the steady-state profiles which were 
first given by Boedewadt (1940).

Fig. 4 illustrates how the vertical velocitv is affected 
when the lower boundary condition wq = 0 is replaced with 
wq = hQ. Physically this is equivalent to replacing the 
solid rotating lower surface with a perforated boundary 
through which mass is added by blowing (hQ> 0) or mass is 
removed by suction (ho^0). The effect of blowing, hQ = .15, 
is to increase the boundary layer thickness and effectively 
to delay the decay process by intensifying the radial inflow. 
Just the opposite effect is observed for suction, hQ = -.15.

Numerical solutions for flow over a stationary surface, 
a more geophysically realistic problem, are given in Figs. 5, 
6 and 7 for Reynolds numbers P. = .755 , 3.0 and 200. The 
dimensionless vertical velocitv, displayed in Fig. 5, is 
characterized by flow which ranges from completely upward
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(R = 200) to flow which is entirely downward for R less e e
than or equal to .755. A stagnation point exists near the 
top of the boundary layer when R = 3.0.

Figs. 6 and 7 show the dimensionless radial and
angular velocities, respectively. These exhibit behavior
very similar to those displayed in Figs. 2 and 3, the major
differences being the departure from cyclostrophic balance
(m = 1) at the smaller Reynolds number, and the fact that o
radial inflow exists for Rg >.755 and for Rq>>1.6.

8. Conclusions
Our findings show that a stagnation point, as described 

by Hatton (1975), does occur, during the decay process, 
within the boundary layer of a vortex core having laminar 
flow, but only for a limited range of Rossby (Reynolds) 
numbers. On the other hand, according to the analytical 
discussion in Section 4, turbulent conditions produce only 
negative vertical velocities. Ward (1972) postulated that 
the enlargement observed on a dissipating tornadic funnel 
represents the transition zone between turbulent flow with 
negative vertical velocity and the laminar flow, nearest the 
surface, with its positive vertical motion. Our study gives 
credence to Ward's speculation on the differences in the 
direction of the vertical velocity between laminar and 
turbulent flows. These findings, however, are valid for a 
relatively short time period typical of the transient decay 
stage of a vortex.
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We have also implied that the outward radial expansion

of a vortex or vortex boundary layer during its final stage,
once established, is due to the internal dynamics much more
than purely diffusionary processes. However, our findings
show that this tendency can be slowed or reversed by adding
mass as modeled, or simulated, by blowing in this study.

In the final conclusion, we note that the velocity oro-
files are highly dependent upon the value of R (R ). Thiso e
is equivalent, in our study, to acknowledging the fact that 
initial conditions are very important when analyzing non
steady vortices.
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APPENDIX A

A Comparison of the Similarity Transformations Used in 
this Study and Those Due to Hatton (1975)

The first term in our series can be compared with the 

similarity transformations used by Hatton (1975). Using (la), 

(2) and (6) we obtain the following expressions (first term 

only) for the dimensional velocity components (for flow over a 

fixed surface)
v = /?e4- m0(y) j

(Al)

t
and

Hatton used the following similarity transformations:

(we have changed his notation slightly for comparison purposes)

= GW ,
yt ( A2)

u= -X- a t: FI?) >

1.
where p) = z/2-t' or in terms of dimensional variables
y = z/2 (rt)\

This suggests the following relationships:

F- p (A3)

G = y I^Mo/Ah } (A4)

H - wo , ( A5)
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To obtain the equations used by Hatton it is only necessarv 
2

to redefine J1 by

AtAt = (A6)
16 R* *r:

a condition that also follows naturally from (A4) using the
2 2 V-asymptotic values of G and m , i.e. , G = 1 and m0 = (/^0 “ l/4Re)2. 

These equations may be obtained from (7) using (A3-6), they 

are:

f" + 2 y\-'+ - 2fx
(A7)

G" + 3-7G' + - yFG - O j

and
H'' F--C).

2
The critical value of Ylj,, where the vertical velocity

2
is entirely downward, was found by Hatton to be = 4.952.

From (A6) we find that

- [Fljt + V)/F> > * S\>- I >

2
and, for/l„ = 4.952 , we obtain the value of R = 0.748 , a 

quantity reasonably close to our value of R = 0.755. The 

slight difference of .007 is probably due to the type of 

numerical method and to the step size used.
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List of Figures

F ip. 1 . Illustrating a nondimensional measure of the (zero- 
order) vertical component (w ). Note that for 
R Z.1,8 the axial flow is entirely downward. For a°limited range of Ro (e.g., 1.6^-R crLlO) an axial 
stagnation point is observed. Larger values of Ro, 
e.g., 500 exhibit only upward motion.

Fig. 2 . Same as Fig. 1 exceot illustrating the radial com-
Donent (u ).o

Fig. 3 . Same as Fig. 1 except illustrating the angular
velocity (m ). Note the slight deviation from the
cyclostrophic condition (mQ = 1) when Rq = 1.6.

Fig. 4 . Nondimensional vertical components (w0) illustrating 
the influence of blowing and suction. Note that 
blowing enhances the depth of the axial upflow 
region thus effectively delaying the decaying process 
through the intensification of the radial inflow.

Fig. 5 . Same as Fig. 1 except R0 is replaced with nearly 
corresponding values of Rg.

Fig. 6 . Same as Fig. 2 except for corresponding values of Rg.
Fig. 7 . Same as Fig. 3 except for corresponding values of P . 

Note the large deviation from the cyclostrophic con
dition (m = 1) when R = .755. o e
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Abstract

In this study we examine the boundary layer dynamics of 
an idealized axisymmetric nonsteady vortex, extending 
the steady-state theories of Kuo (1971). The resulting non
linear partial differential equations are then solved by the 
application of a Galerkin technique. Because of insufficient 
knowledge about atmospheric velocity profiles within the de
veloping vortex we choose simplified initial conditions which 
contain nonzero tangential or tangential and vertical motions 
only. We then observe the production of secondary radial and 
vertical motions created by the nearly impulsive application 
of 'no-slip' boundarv conditions. This time dependent Taylor 
boundary condition causes the fluid to decelerate or spin- 
down. During this process inertial oscillations are generated.

Our numerical calculations indicate that steady-state so
lutions are obtained when the deceleration is gradual. Speeding 
up the deceleration process gives rise to a large amplitude 
oscillatory vertical velocity. An analysis of the linearized 
equations indicates the presence of inertial oscillations of 
frequence 2(n)^^-, S'- the angular velocity and n a parameter, 
O^n^l. Numerical solutions suggest nearly similar conclu
sions. By comparing solutions of the nonlinear equations 
against linearized versions of the same equations we conclude 
that initially the vortex develops almost linearly. To verify 
the accuracy of our numerical procedure, comparisons between the 
Galerkin solutions for various time and space mesh sizes are 
made.
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1. Introduction
The presence of vortices in our surroundings has sparked 

many inquiries into the nature of rotating fluids. In a 
theoretical setting the motions above or between rotating 
plates were the first to be analyzed, e.g., von Karman (1921). 
Later, Boedewadt (1940) studied the boundary layer dynamics 
of a vortex. Since then numerous investigations have been made 
broadening the subject area, e.g., analyzing the effects of 
non-solid rotation and geophysical boundary conditions. To a 
large extent most of these studies were concerned with the 
steady-state problem. The boundary layer dynamics of a de
veloping vortex are more difficult to examine but are of special 
meteorological value.

The non-steady boundary layer dynamics of a rigidly ro
tating fluid have been studied by Thiriot (1940, 1950). By 
suddenly arresting the motion of a rotating disk in a viscous 
incompressible fluid he observed a time dependent boundary layer 
flow whose final state of motion (before deterioration) corres
ponded to the state predicted by Boedewadt (1940). An accel
erating or decelerating disk has also been considered by Thiriot 
(1942). The related problem for the time-dependent flows between 
or above rotating disks have been examined by Pearson (1965), 
Benton (1966) and Florent et al. (1973). Experiments have also 
been conducted by Bode et al. (1975) in which a vortex is driven 
by a body force located along part of the axis of rotation. 
Although their study deals primarily with the effects of lower 
boundary conditions the evolution of the vortex was also examined.
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In this study we extend Kuo's (1971) vortex model to the 

time domain. This vortex model assumes a power-law velocity 
distribution proportional to , O^n^-l, r a radial measure
(n = 1 corresponds to solid rotation and n = 0 implies po
tential flow). In this manner the governing Navier-Stokes 
equations are transformed into a system consisting of two 
parabolic and one first order partial differential equations. 
This system is solved by the variational technique known as 
the Galerkin method.

The characteristics of a non-steady vortex as it tends 
toward steady-state were first analyzed rigorously (in the 
classical spin-up problem) by Greenspan and Howard (1963).
They showed that the spin-up takes place in three different 
time scales. Similarly, Benton (1966) has identified three 
distinct phases or growth patterns within the boundary layer 
for flow over an impulsively started disk. The first phase 
consisted of the boundary layer growing proportionally with 
time. During the second phase this growth slowed while the 
final phase consisted of a small amplitude decaying inertial 
oscillation about the steady state. We will try to identify 
various phases from our numerical solutions. The presence and 
importance of inertial oscillations are also discussed for 
both non-linear and linearized problems.

Atmospheric phenomena are difficult to model because of 
the involved physical and dynamical processes and lack of 
general knowledge of the transient radial pressure gradient
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and its relationship to the tangential velocity, especially 
at the top of a growing boundary layer. However, there is 
some hint that mesometeorological vortices develop far above 
the earth's surface (e.g., 3 km) and then later slowly descend 
and appear near the surface (Brandes, 1977). Thus secondary 
velocity components are created because of the 'no-slip' lower 
boundary conditions and these motions interact as the fluid 
undergoes some boundary induced spin-down. The most striking 
example of this is the descent of a tornado to the earth's 
surface. To gain some knowledge of how the vortex boundary 
layer develops during spin-down we will investigate the dy
namics of a very simple idealized situation similar to that 
considered by Thirlot (1940, 1942, 1950) but include both 
solid and non-solid rotations.

A fluid having an initial rotating horizontal motion or 
such a motion with superimposed vertical motion, is allowed to 
decelerate and approach the no-slip flow conditions at the 
lower boundary. This is accomplished by impulsively subjecting 
the tangential velocity to a time dependent geophysical boundary 
condition. Inertial oscillations are thereby generated. Their 
impact upon the growing boundary layer depends upon the impul
siveness of this deceleration process. Furthermore, the 
suddenness of this impulsive motion produces an initial boundary 
singularity. But the long term time dependent effects of such 
discontinuities on a diffusion equation (parabolic problem) are
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usually small provided a fine mesh is used along with a stable 
difference method (Ames, 1969). Galerkin methods provide an 
alternative to such an approach.

Our conclusions show that the steady-state solutions were 
obtained without difficulty provided the deceleration was not 
too sudden. Speeding up the deceleration process enhanced the 
generation of inertial oscillations thereby giving rise to a 
large amplitude oscillatory vertical velocity. An analysis of 
the linearized equations shows a preferred frequency of 2(n)vh 
of the inertial oscillations. For solid rotation (n = 1) 
the frequency is simply 2/1 agreeing with Grenspan and Howard 
(1963) and Benton (1966). Thus, for non-solid rotation (n<il) 
this frequency becomes small. Results of the numerical so
lution of the non-linear equation also suggest similar con
clusions .
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2. Statement of the Problem 

A. Nondimensionalization

The simplified time dependent governing set of par

tial differential equations are obtained by extending 

the concepts and transformations outlined by Kuo (1971) 

in his study of the boundary layer of an axisymmetric vor

tex in a steady-state. The Navier-Stokes equations are 

first simplified by assuming that variations along the 

boundary are much smaller than variations normal to the 

boundary. Next they are nondimensionalized. Representing 

dimensional variables with a bar and denoting nondimensional 

variables by ordinary letters, we set

t- r' , j ---- y»7? V/P
■'Y' >

Vn — r‘m

where V^, rm and c5R are the maximum tangential velocity, 

horizontal scale length, and reference boundary layer 

thickness, respectively. The governing equations are:

sLU. vV _ dP-T + >dJ*. Jr c)Z- f~

(la)

J_ oi Jy J V J_ ZLSt Jt ^ jz ^ f~ J 2"

_i_ _i£_ _i 9 w _
6r f- ^ sz ~ ( lb)
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B, The Similarity Transformations
We now simplify the above equations utilizing the follow

ing similarity transformations suggested by Kuo (except for t):

Furthermore the above horizontal velocity transformations can 
be related to the angular momentum m through

v = m/r = m0G/r and u =-m0F/r, 
2nwhere m = r (a power law distribution) o

It is clear that even though the velocity distribution of 
a vortex cannot be 'continuously* represented by such a 
power-law with a fixed value of n , it is however possible to 
represent various parts of the vortex for different values of 
n. Very close to the axis the flow is in solid rotation 
which corresponds to n = 1. Outside the region of maximum 
winds the velocity components become proportional to 1/r satis
fying the well known potential vortex relationship which corres
ponds to n = 0. Unfortunately, steady-state solutions do not 
exist for n's much smaller than 0.5. For any fixed n the 
similarity solution would be valid for a limited range of r 
provided the solution exists and behaves properly.

Equations (la) and (lb) become respectively (2a) and (2b)
when (lc) is utilized:
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d/r t (/ - (n + i)/jyfj +
o^/-"

ax  G"- < (2a)

c)k o)G- _ o* 6-
ax 3/7^6- - (/) - /j/a a 7 o>^

a /V
17 (2b)

The formulation of the above problem is completed by speci
fying the initial and boundary conditions.
C. Initial and boundary conditions

The growth of the boundary layer during the spin-down of 
a vortex in uniform rotation is of special interest in this 
study. We require initial conditions of the form 

F (7,0) = 0 ,
G (7,0) =1, (2c

and H (7,0) = h .o
For the lower boundary at 7 = 0 we require that the 

radial component be zero while the tangential component slowly 
decelerates, resulting in

F ( 0, t) = 0,
ac(o,t)G (0 ,t) - K(t) 0 , t >0, (2d)^7

and H (0 ,t) = hx(t).

We choose a coefficient K(t) of the form K(t) = crexp(-t/CT ) 9
CT a positive constant. Note the K(t) rapidly approaches
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zero with increasing value of t. A constant K implies the 

employment of the geophysical boundary condition (Taylor,

1915) .

For the upper boundary conditions at ^ - 4^ we have

= 0,

G(«L , t) = 1»

Because the boundary layer thickness varies with time, selecting 

the steady-state value insures an adequate depth for the 

calculations.

The initial boundary singularity at ^ = 0 and t = 0 arises 

because, from (2c)

1 = lim G(0,t)>z^lim K(t) °?t- = 0. 
t-*0 t-*0

By examing a range of values for K(t) we can study the effect 

within a vortex imposed by the discontinuous initial boundary 

condition, e.g., inertial oscillations can be generated in this 

manner. Larger values for K(t) imply that a smaller impulsive 

change in dG/<9 7 and/or G is required at the first discrete 

time step in the numerical procedure. We do require that 

h 
° 

= l
w
im

o
 
 
h

1
,(t).

An analytical evaluation of the effects of the initial 

boundary discontinuity is difficult to obtain because of the 

nonlinearity of the equations. The normal numerical procedure 

is to vary the grid mesh and observe the resulting changes and
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compare for special cases the numerical approximation with 

known solutions. Both of these techniques will be used in 
this study.

C. The Linearized Problem

To isolate the contribution of the nonlinear terms during 

early stages of the boundary layer development, we will analyze 

a system of linearized equations. These are obtained by ex

panding F, G and H in powers of a small parameter €, i.e.,

(3)

H( 'yj, t) - Y_ + ho ,

where f^ = f^( ^ , t), g^ = g^C^jjt) and h^C ^ , t), and sub

stituting them into (2a, b). This yields, after simplification, 
the following system of linear equations:

(4a)

(4b)
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The initial conditions (2c) become

fk(7,o) = o, k > l,

gK<?,°> = o, (4c)
and hk(^,0) = 0

while the boundary conditions (2d) require that

fk
hk

(1 + Si 33, , 4d)K(t) =
J 3 k , k > 1.?k = K(t)
c* 7

At the top of the boundary layer we have that

fk<4, . t) = 0 
gk(

( 4e )
 , t> = o, ksi.

For convenience, follow Kuo (1971) and set £ = 1.
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3. An Analysis of the Linear Problem for Inertial Oscillations
The presence of inertial oscillations in fluids undergoing 

spin-up or spin-down has been carefully documented, see 
Greenspan and Howard (1963), Benton (1966) and Debnath and 
Mukherjee (1974). For a homogeneous fluid in solid rotation 
these oscillations exhibit a frequency of twice the angular 
velocity_/\ . For flow over a rotating disk Benton (1966) in
dicates that, in the very least, inertial oscillations are re
sponsible for overshoot since a damped oscillation of frequency 
2/1 appears as the fluid approaches the steady-state. Greenspan 
and Howard (1963) have pointed out that in the earlier stages 
of motion development inertial oscillations contribute to the 
same extent as other terms.

In our problem we examine the characteristics of inertial 
oscillations by analytically analyzing the linear equations 
(4a) and (4b). Assuming k = 1 and h = 0 we obtain the homo- 
geneous system

4- *9, ~ (5)

— 2.tlat
Provided a solution of the form

. f. — A.

-*.X 6p ( )

exists, then it can be shown that the solutions for fj and 
approach zero as ^ approaches infinity, regardless of

11
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the lower boundary conditions, provided the characteristic 

roots of

m i a- tfm2'- v *+- — O 3

have negative real parts. Rewriting the characteristic equa

tion in terms of two equations in p and q when m = p + iq, 

p and q real numbers, gives

(p*+ vn-o ,

+ *W-fV -o.
After some algebra it can be shown that p is negative and 

real provided | Y | > 2(n)2. Note, for non-zero values of hQ

the above frequency must be modified. Debnath and Mukherjee 

(1974) have discussed this point for flow over a rotating 

disk.

When y= 2(n)2^ f^ and exhibit only pure inertial 

oscillation. When X is related back to a dimensional 

variable, say , the frequency is X = 2(n)v\ . Here 

J\ v 2n 2 (/I = r in our model) is the dimensional angularrm
velocity at the top of the boundary layer. For solid rotation 
(n = 1) this is in agreement with Greenspan and Howard (JL96 33* 

For non-solid rotation (n ^ 1) this frequency is reduced. We 

now examine the numerical solution of the full non-linear 

equations and make comparisons with these results.
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4. Discussion of Results

i

The strength and vitality of the secondary velocity com
ponents are good measures of the development of the boundary 
layer. The variations in the radial component, F-field, for 
the nondimensional times T = 1.6, 7.2, 16, 56 respectively 
are shown in Figure 1 for n = 1.0 (solid rotation) and for 
K = 5e“T/5. During this time interval the K-variation was 
from 3.63 to 0. In these calculations as in most, unless other
wise stated, we selected the nondimensional time step At = 0.04 
and the grid distance h = 0.15. The most significant feature 
shown in Figure 1 is that the radial component develops rapidly 
an inward motion near the surface, e.g., when T = 1.6, then 
slowly builds (for larger T's) vertically until damped sinu- 
soidual motions typical of steady-state solutions are obtained. 
Moderate growth of the lower inflow layer occurs between 
T = 1.6 and 16 after which additional development is somewhat 
subdued. By T = 30 (not shown) the velocity component deviated 
by less than 1% from the steady-state value. As time T approaches 
56 there is a very small damped oscillation about the steady- 
state value similar to the behavior described by Benton (1966).
The almost negligible deviation at time T = 56 from Kuo's 
steady-state values i$ illustrated in Table 1.

Figure 2 shows the changes in the radial component at 
T = 2, 10, 20, 29, 56 when n = 0.5 (non-solid rotation) and for 
K = 6e-,1//6. The larger time dependent value of K was chosen
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to facilitate a visual appreciation of the growth pattern.
As before the radial component contains only inflow (T = 2) 
during early development but by T = 10 there is both inflow 
and outflow in the vertical. This damped oscillation pattern 
progresses vertically until near steady-state values are ob
tained at T = 56.

In Figure 3 the dimensionless tangential velocity com
ponent G is illustrated at T = 2, 8, 16, 56 for non-solid ro- 
tation (n = 0.75) and when K = 5e .An important physical 
feature is the existence of G values larger than those demanded 
under a cyclostrophic balance condition for all values of T 
near 4. The time required to reach steady-state conditions
was commensurate with those when n = 1.0 using the same ex
pression for K.

A comparison between the radial components when n = 1 
(solid rotation) and n = 0.5 (non-solid rotation) at fixed 
times T = 4 and 16 is made in Figure 4. The rapid growth of 
the F profile for non-solid rotation is apparent since at 
either time these profiles are over 50% larger, in the vertical 
direction, than their n = 1 counterparts. Such a percentage 
difference is evident for larger T?s also when near steady- 
state conditions prevail.

Profiles resembling those in Figure 4 may be obtained by 
adding mass to the system, i.e., by applying a small non
negative vertical velocity (blowing or sucking), say h^(t) = hQ, 
a constant, at the lower boundary. In Figure 5 we illustrate
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the dimensionless radial component F when h =0.2 and h =0.o o
From these (and other calculations not shown) we conclude that 
blowing amplifies the boundary layer thickness, speeds up its 
growth rate, and causes the vortex to behave similar to a 
vortex having a more non-solid rotation. These conclusions 
are compatible with those reached by analyzing the effects of 
blowing in the steady-state problem.

Modifying the value of K has a pronounced effect upon the 
velocity distribution because of the possible enhancement of 
inertial oscillations. This is best illustrated by studying 
changes in the vertical velocity H and the radial component F.
In Figure 6 the temporal change in H at the top of the boundary 
layer of a vortex in non-solid rotation (n = 0.5) is plotted 
for a range of values of K generated by the expression:

K(t) = CT exp(-t/o~ ) 
where O' - 1, 3, 5 and 10.

We identify two major flow characteristics from Figure 6. 
The first is that the value of H at the top of the boundary 
layer experiences rapid changes in magnitude with variations in 
O'. The other feature is the quasi-oscillatory behavior of H 
particularly for the smaller C^'s. These variations in H are 
due to inertial oscillations which become verv predominate for 
the smaller values of 0~ , a nearly impulsive application or 
the no-slip boundary condition. No stationary flow could be 
achieved within the allotted computer time of ten minutes on The 
C.D.C. 7600 wither = 0.
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The period, 2 Tf/, of these oscillations, as evident 

in Figures 6 and 7, for n = 0.5 is very nearly 4.4 + 0.2 non-
dimensional time units. This agrees well with the value 4.443 
predicted from the linear analysis in Section 3. Similar 
analysis for n = 1.0 shows an oscillation period very nearly 
equal to the predicted value of FT .

The variation in the depth of the surface inflow layer 
(F^> .005) as a function of n and time is shown in Figure 8.
The differences in the magnitude and oscillatory behavior is 
directly related to the n variation.

Solutions of the linear problem, equations (4a) and (4b), 
are obtained by Galerkin methods in an identical manner to that 
described above except that the predictor-corrector procedure 
was not necessary. Our resulting numerical calculations for H 
at times T = 15 and T = 33 are shown in Figures 9 and 10, 
respectively. In each figure three profiles are shown repre
senting the power series solutions containing the first term; 
the first plus the second term; and all terms, respectively.
The latter is the solution of the non-linear problem described 
by equations (2a) and (2b). For simplicity in the lineariza
tion process we have taken 6 = 1.0, following Kuo (1971).
Figure 9 shows clearly that during early stages of the vortex 
development the contribution of the non-linear terms is small. 
However later, as evidenced by Figure 10 they are extremely 
important, especially in the lower three-fourths of the boundary
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layer. Variations in K also affect the degree of linearity 
of the problem.

To expound further upon the accuracy of the Galerkin 
solutions, in addition to what was evident from Table 1, we 
altered the time step At and grid spacing h to check our 
previous deductions. We present selected values of G for 
'yj = 0 and F for various ^ ' s in Tables 2, 3 and 4 for T's 
1.6 and 8.0. Note that the value of F and G in Tables 2 and 
3 is changed very little as a result of changing At. We 
emphasize that the differences between the respective values 
of F and G calculated using the time steps At = 0.02, 0.04 
and 0.0 8 are reduced as At becomes smaller, indicating that 
convergence is taking place. Likewise changing the space in
terval h gives similar results as shown in Table 4. This 
technique, a standard one for testing numerical solutions of 
partial differential equations checks out the adequacy of the 
Galerkin method for our purposes.
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5. Conclusions

In summary we note that the secondary flows developed in 
the boundary layer during the deceleration of a vortex exhibit 
quasi-oscillatory behavior due to inertial oscillations of 
frequency X - 2(n)J\. , 0<n^l. For solid rotation, n = 1, 
these results agree with previous findings. In non-solid ro
tation, n 1, the frequency is reduced. When nearly impulsive 
boundary conditions are applied, e.g.,cr = 1, these inertial 
oscillations create a large oscillatory vertical velocity. By 
varying At and space interval h it is confirmed that these 
large vertical velocities are physically real and do not arise 
from an inaccuracy in our numerical (Galerkin) procedure.
Linear analysis (Section 3) confirms the frequency and period 
of these inertial oscillations. Under impulsive conditions, 
cr = 0, convergence could not be attained.

Our analysis showed that the radial component rapidly 
developed an inward motion near the lower surface. The sinuo- 
soidual growth in the vertical then proceded at a slower rate. 
Finally, there existed a small amplitude decaying oscillation,

of frequnecy = 2(n)^/\ (J\ - jm r2n~2), about the steady
rm

state provided the flow showed a tendency to converge. These 
phases in the growth of the boundary layer are somewhat similar 
to those described by Benton (1966). We showed further that in 
the early stages the boundary layer development is essentially 
linear with nonlinear terms becoming important later.
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To analyze further the transient boundary layer dynamics 

of an atmospheric vortex it would be necessary to know 
accurately the relationship between the radial pressure gradient 
and the tangential velocity component at the top of the 
boundary layer. An accurate formulation of the wind-pressure 
relationship is not easy because of the lack of measurements.
In addition to this relationship, a study incorporating other 
physically important quantities, such as the effect of thermo
dynamics, the effect of the release of latent heat, and the 
inclusion of turbulence, would greatly refine and improve our 
knowledge of the atmospheric vortices.
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APPENDIX A

Adoption of the Galaxin Method for the Boundary Layer Problem
Equations (2a, b, c, d, e) describe a nonlinear initial

boundary value problem. Nonlinear problems are customarily 
solved numerically. Recent advances in a numerical technique 
known as the Galerkin method have been outlined by Ciarlet et 
al. (1967), Douglas and Dupont (1970) and Wang et al. (1972). 
Advantages of the Galerkin method over finite difference methods 
have been noted in these, and in other recent publications, 
e.g., Swartz and Wendroff (1974). We now proceed with our 
development of the Galerkin method.

The variational form of (2a, b) is obtained by multiplying 
each equation by V( "y ) and integrating with respect to y from 
0 to 8^ , yielding

( A2)

The above integrals, along with the initial conditions, must be 
satisfied for those V('y ) that belong to the set S of real
valued functions that are piecewise continuously differentiable
on . The Galerkin approximations to F, G and H will be
represented by F, G and H, respectively, which belong to a
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finite dimensional subspace, M, of S. Ciarlet et al. (1967) 
considered several possible choices for M from which we choose 
the chapeau functions because they lead to a tridiangonal matrix.

[°>The interval J'YJ is subdivided into units of constant
length h = j by The partition

O = 7, < • • • <7*= ^ •

The subspace M is defined by the basis where

' ~ 1V. O j otherwise,

(1 -Vj-M ,

O : otherwise

j otherwise.

The coefficients in the Galerkin approximations are de
fined by substituting

F(7, t) - Y. ■=<* I V) ,
',-a-

s (7jt) - }_ ^UVJ’lh (A3)
A*1'H(7X. VJ1),

for F, G and H in (Al, A2), and V ^ ^ ) for V(y). It is to 
be noted that V^(0) = 1, V^(^) = 1 and each of the approximations
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do not yet satisfy the required boundary conditions. The imple

mentation of the boundary conditions will be considered later. 

(Al, A2) is now represented by the following system of equations

4, 7 M V? +{nV])l

+/ ?G V? -°

(A4 )

/ If V 7 + V} Jj Y <*V~ V7 r °>

and

(A5)

where j = 1, . . . , N. Integration bv parts given an equiva

lent representation, where for convenience we use the notation 

+ in 0+ and - in £~ to indicate approaching these limits from 

the right and left respectively,

+/ -/SJV - fftf -0£■>) 0

7
\/ <"+y/ ^ If V? VA*

'o ^7 17J y  °7 - V
o)6- /. S>G
j-y v +■ = O ;

0"
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Applying (A3), simplifying, and writing in matrix notation, 

we obtain

- (A8)
-h ; YJ c< ^ ) P 4- o/ — 0 j

d 4
+• - xnc(<?)£ - O ,

^ ? - ffA-O ,

where
o(T — [^1 > > ' " * , °<n\ >

^ ~ [ ' * * > ’

yT= [*, , K, - ■ .} >

and

<£> ^
B,(-*>?; = [hjx] . ^ -/ ( f (n+i)XLvL v/vj + vi"i$'

l-l

+• £
N

 (/ - j n)«L vL y- - yfy +■ v/v;
L> S. H S*j .

BJk) - [t»^], fcajx =/ 7( £ (H+tjvxv'v, + y:V')d7

-vV +
£ 0+
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The tridiagonal nature of the above matrices is illustrated 
by the following example representing matrices generated from 
linear and nonlinear terms, respectively. First we see that

and for E = [e^] , VXV/VjJ* > * * ->V;
& L-1 '

-(*,+2%) ( f, '

(C, " %+,)(**+ + &+1 )
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Wang et al. (1972) suggested the following Crank-Nicolson 

method for discretizing the time domain (dimensionless t do

main in our case). They also wrote the equations (A8) in terms 

of the differences of two time (t) steps to increase compu

tational stability. Letting the superscript denote the t step 

we have

(A9)
r*f'+ f

-i ■)) C>< - ca< -h

- A*C| )t

and

//[■S*'-'-S*] - ?Ajr 2Bjh-2f*Z\
s; 

To avoid the necessity of solving a nonlinear algebraic 

system a predictor-corrector scheme suggested by Douglas and 

Dupont (1970) is used to approximate (A9):



Predictor(77+ - I4] 
a+£,(«*, y*;^- ^*C{}W*1 «* ,

-nA^4?Vp*+-5‘J +(fl+ ^ ^[f*-f J =
D-H Air c($ J*(k — }

=-^d

and
fi'p'**1- **] _ 53 *+/'_ y'jr>f*

Corrector 
RA*  t j»k+'+ ^ -h 7* )j p k+,_ <x * *+/

-2. ' i 4*Cl -
B, (2*W(l** A JL. AJ?4/A-AU- -, r ^ k^f+l -**  AT- C(^t.i.,/)^ ,

Jt+7at
<X
a, W i -±k ‘*"4- '1A+c(^-j-S-)  _ c< + (^+^F^

2n**c{£-±£)
A i*/ At 

-
—-» -W-T -it, ^ L-  a*3(^41^* 5

a,



-27-

The predictor-corrector scheme requires the solution of 

two sparse 3N x 3N linear algebraic systems for each step. It 

should be noted that all the matrices generated from nonlinear 

terms must be re-evaluated each time but because of their 

tridiagonal nature this should not be a major computational 

effort.

The Galerkin method has transformed the original partial 

differential equations into a system of ordinary differential 

equations in the coefficients of the basis functions. In fact, 

there is one ordinary differential equation associated with 

each basis function, , for i = 1, ..., n. It is convenient 

to adjust or replace those ordinary differential equations that 

lie at the left-hand end (^ =^and the right-hand end

- ■yyj N) so that the boundary conditions are satisified. For 

the boundary conditions (2d, e), we would have that

<*,(.*)= O } X, (*-j - h^Jr) ,

[V, -/<(t)V,')$, - k( = o )

7=7,
<XN[t)-0 o.hd /.

The initial conditions given by (2c) must also be satis

fied. Two common procedures may be used to generate the initial 

values, i.e., to evaluate coe f f icient s o?( 0 ) , (j>(0) andtf"(0).

The first is the least squares method, e.g., for ^ (0), we would 

have to solve for^>(0) from

I few/ yivj =/ v, ^ , ) = h ■ ■ -,n.
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The second approach is to determine the value of the coeffi
cients directlv. For example (3 (0) is found by solving the 
system

1- 1 ■
A. = l

By choosing rj = , j = l . . . , N and noting that the chapeau
functions

i, i = j 
i(7j) =

o > i / j
gives ^(0) = 1, i = 1, . . . , N. Even for non-smooth initial 
conditions the latter method works well provided N is large.

One advantage with the Galerkin method is that it yields a 
solution continuous in the space variable y for a specified 
time t = T. Thus it is convenient to solve equation (2b)

- F
by direct integration, as opposed to forming the variational 
problem, i.e.,

J 
Hty ,*)=  7::)  J + h, it),

/■=! 'o

provided F is obtained as described above. This procedure is 
more efficient and just as accurate as the method described 
by (A2), the variational approach.

The validity and accuracy of the Galerkin method can be 
tested once the steady-state is achieved by comparisons against 
known steady-state solutions, for example, that due to Kuo 
(1971).
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Table 1

A comparison of the selected values of F, G and H computed 
at T = 56 and the corresponding quantities for steady-state 
conditions according to Kuo (1971). Other relevant quanti- 
ties are n = 1.0, K = 5 exp(-T/5) ^0, h = 0.15 and At - 0 04.

F G H

1.5 .45202
(Kuo's)
.44965 1.01321

(Kuo's 
1.01340

)
.55105

(Kuo's)
.54937

3.0 .03787 .03604 1.27417 1.27138 .93022 . 92476

4.5 -.13811 -.13708 1.06660 1.06392 .80566 .79971

6.0 -.05143 -.04987 .94330 .94272 .65085 . 64723
7.5 .02178 .02231 .96923 .96930 .63968 .63763

9.0 .01759 .01785 1.00820 1.00778 .67545 .67384

10.5 -.00253 -.00182 1.01040 1.00989 .68534 .68445

12.0 -. 00613 -.00516 1.00035 1.00027 .67686 .67729
13.5 -.00159 -.00074 .99713 .99746 .67096 .67279
15.0 .00056 .00118 .99879 .99933 .67068 .67361



Table 2

Values of G and F for different time step, At, sizes. 
To conserve space only those values at T = 1.6 and 
select values of G and F are shown. Other relevant 
quantities are h = 0.15, n = 0.5 and K = expC-T).

At = .02 At = .04 At = .08

values of G

.0 .11541 .11556 .11586

values of F

.15

. 30

.60
1.50
3.00
6.00

12.00

.09760

.17478

.27636

.30988

.11475

. 00143

.00000

.09734

.17427

.27535

.30773

.11275

. 00136

.00000

. 09682

.17323

.27332

. 30340

.10877

. 00124

.00000



Table 3

Same as Table 2 but for T = 8.0

7 At = .02 At = .04 At = .08

*
values of G

.0 .00015 .00015 .00015

values of F

.15 .16911 .16909 .16907

. 30 .31641 .31638 .31633

.60 .55126 .55112 .55112

1. 50 .90641 .90629 .90604

3.00 .91307 .91281 .91225

6.00 .24816 .24765 .24658

12.00 -.68194 -.68080 -.67834



Table 4

Same as Table 3 except K = 5 exp(-T/5), At = 0.04 an d
for different h's as shown

7 h = .075 h = .15 h = . 30

values of G

.0 .42270 .42058 .41527

values of F

. 3 .15147 .15235 .15451

.6 .24253 .24410 .24804
1.2 .29887 .30126 .30729
2.4 .18766 .18985 .19543
4.8 -.01220 -.01288 -.01376
9.6 .00660 .00609 .00596

15.0 .00000 .00006 -.00002



List of Figures

Fig. 1. Illustrating the development of the F-field (a non- 
dimensional measure of the radial component) for. 
solid rotation at various T's. Note how the radial 
motion builds vertically as the value of T increases 
and as K approaches zero.

Fig. 2. Same as Fig. 1 except for nonsolid rotation, n = 0.5, 
and the value of K and T's are slightly different.

Fig. 3. Illustrating the development of the G-field  (a non- 
dimensional measure of the tangential component) for 
nonsolid rotation, n = 0.75, at various T's. Note 
that for some η  G is larger than 1.0 for all T's.

Fig. 4. Illustrating the development of solid (n = 1.0) and
nonsolid rotation (n = 0.5) at specified times for the 
nondimensional radial component (F).

Fig. 5. Illustrating at specified T's the development of the nondimensional radial component (F) with and without 
pumping.

Fig. 6. Illustrating for nonsolid rotation the transient
behavior of the vertical velocity (H) at the top of 
the boundary layer. Note the increase in the magni
tude of H associated with smaller values of σ  , a 
nearly impulsive application of no-slip boundary 
conditions.

Fig. 7. Illustrating the transient behavior of the vertical 
velocity (H) at the top of the boundary layer as a 
function of n.

Fig. 8. Illustrating the depth of the surface inflow layer
(F> 0.005) as a function of n. The asterisk denotes 
the depth at steady state.

Fig. 9. Illustrating at a specified time a comparison between 
the linear solutions (1st term and 1st plus 2nd term) 
and the nonlinear solution.

Fig. 10. Same as Fig. 9 except T is different (T = 33).
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